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1  Scope of the Chapter

This chapter is concerned with the provision of some commonly occurring physical and mathematical
functions.

2 Background to the Problems

The majority of the routines in this chapter approximate real-valued functions of a single real argument,
and the techniques involved are described in Section 2.1. In addition the chapter contains routines for
elliptic integrals (see Section 2.2), Bessel and Airy functions of a complex argument (see Section 2.3),
exponential of a complex argument, and complementary error function of a complex argument.

2.1 Functions of a Single Real Argument

Most of the routines for functions of a single real argument have been based on truncated Chebyshev
expansions. This method of approximation was adopted as a compromise between the conflicting
requirements of efficiency and ease of implementation on many different machine ranges. For details of
the reasons behind this choice and the production and testing procedures followed in constructing this
chapter see Schonfelder (1976).

Basically, if the function to be approximated is f(z), then for = € [a, ] an approximation of the form

ﬂm:mw§jam@>

is used (Z’ denotes, according to the usual convention, a summation in which the first term is halved),
where g(x) is some suitable auxiliary function which extracts any singularities, asymptotes and, if possible,
zeros of the function in the range in question and ¢ = ¢(z) is a mapping of the general range [a,b] to the
specific range [—1, +1] required by the Chebyshev polynomials, 7.(¢). For a detailed description of the
properties of the Chebyshev polynomials see Clenshaw (1962) and Fox and Parker (1968).

The essential property of these polynomials for the purposes of function approximation is that 7),(¢)
oscillates between £1 and it takes its extreme values n 4 1 times in the interval [—1,41]. Therefore,
provided the coefficients C, decrease in magnitude sufficiently rapidly the error made by truncating the
Chebyshev expansion after n terms is approximately given by

B(t) ~ C, T, (¢).

That is, the error oscillates between +C, and takes its extreme value n + 1 times in the interval in
question. Now this is just the condition that the approximation be a mini-max representation, one which
minimizes the maximum error. By suitable choice of the interval, [a, b], the auxiliary function, g(x), and
the mapping of the independent variable, ¢(x), it is almost always possible to obtain a Chebyshev
expansion with rapid convergence and hence truncations that provide near mini-max polynomial
approximations to the required function. The difference between the true mini-max polynomial and the
truncated Chebyshev expansion is seldom sufficiently great enough to be of significance.

The evaluation of the Chebyshev expansions follows one of two methods. The first and most efficient, and
hence the most commonly used, works with the equivalent simple polynomial. The second method, which
is used on the few occasions when the first method proves to be unstable, is based directly on the truncated
Chebyshev series, and uses backward recursion to evaluate the sum. For the first method, a suitably
truncated Chebyshev expansion (truncation is chosen so that the error is less than the machine precision)
is converted to the equivalent simple polynomial. That is, we evaluate the set of coefficients b, such that

n—1

y(t) = ni:brtr = Z/ CrTr(t)'
r=0

r=0
The polynomial can then be evaluated by the efficient Horner’s method of nested multiplications,
y(t) = (bO + t(bl + t(b2 +.o. t(ban + tbnfl))) e )

This method of evaluation results in efficient routines but for some expansions there is considerable loss of
accuracy due to cancellation effects. In these cases the second method is used. It is well known that if
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bn,fl = Cn,fl
by =2tb, 1+ C
b] :2tbj+1 ]+2+C j=n—3,n—4,...,0

then

Z (t) = 3(bo — by)

and this is always stable. This method is most efficiently implemented by using three variables cyclically
and explicitly constructing the recursion.

That is,

a = C,,
B = 2ta+C,,
Y o= 2t,8 —o+ C,,,,3
a = 2ty—=F+C,y4
B = 2ta—v+0C,s

saya = 2v—p0+0C,
ﬁ = 2tOé - + C]

yt) = tB—a+iC

The auxiliary functions used are normally functions compounded of simple polynomial (usually linear)
factors extracting zeros, and the primary compiler-provided functions, sin, cos, In, exp, sqrt, which extract
singularities and/or asymptotes or in some cases basic oscillatory behaviour, leaving a smooth well-
behaved function to be approximated by the Chebyshev expansion which can therefore be rapidly
convergent.

The mappings of [a, b] to [—1,41] used range from simple linear mappings to the case when b is infinite,
and considerable improvement in convergence can be obtained by use of a bilinear form of mapping.
Another common form of mapping is used when the function is even; that is, it involves only even powers
in its expansion. In this case an approximation over the whole interval [—a, a] can be provided using a
mapping t = 2(x/ a)z—l. This embodies the evenness property but the expansion in ¢ involves all powers
and hence removes the necessity of working with an expansion with half its coefficients zero.

For many of the routines an analysis of the error in principle is given, namely, if £ and V are the absolute
errors in function and argument and € and ¢ are the corresponding relative errors, then

E ~ |f@V

E o~ |of()s
of (@)

¢ i@ |

If we ignore errors that arise in the argument of the function by propagation of data errors, etc., and
consider only those errors that result from the fact that a real number is being represented in the computer
in floating-point form with finite precision, then 6 is bounded and this bound is independent of the
magnitude of xz. For example, on an 11-digit machine

6] < 107",

(This of course implies that the absolute error V = ¢ is also bounded but the bound is now dependent on
x.) However, because of this the last two relations above are probably of more interest. If possible the
relative error propagation is discussed; that is, the behaviour of the error amplification factor |z f'(z)/f(z)|
is described, but in some cases, such as near zeros of the function which cannot be extracted explicitly,
absolute error in the result is the quantity of significance and here the factor |z f'(z)| is described. In
general, testing of the functions has shown that their error behaviour follows fairly well these theoretical
error behaviours. In regions where the error amplification factors are less than or of the order of one, the

[NP3546/204] S.3



Introduction — S NAG Fortran Library Manual

errors are slightly larger than the above predictions. The errors are here limited largely by the finite
precision of arithmetic in the machine, but € is normally no more than a few times greater than the bound
on 4. In regions where the amplification factors are large, of order ten or greater, the theoretical analysis
gives a good measure of the accuracy obtainable.

It should be noted that the definitions and notations used for the functions in this chapter are all taken from
Abramowitz and Stegun (1972). Users are strongly recommended to consult this book for details before
using the routines in this chapter.

2.2 Approximations to Elliptic Integrals

Four functions provided here are symmetrised variants of the classic elliptic integrals. These alternative
definitions have been suggested by Carlson (1965), Carlson (1977a) and Carlson (1977b) and he also
developed the basic algorithms used in this chapter.

The standard integral of the first kind is represented by
dt
ViEF o)t ry)t+2)

Rp(x,y,2)

where x,y,z > 0 and at most one may be equal to zero.
is chosen so as to make

Rp(z,z,x) = 1//z.

If any two of the variables are equal, Ry degenerates into the second function

The normalisation factor, i >

Ro(@,y) = Re(@,4,9) /\/t—l-—ﬂﬂt-i-y)

where the argument restrictions are now x > 0 and y # 0.

This function is related to the logarithm or inverse hyperbolic functions if 0 < y < z, and to the inverse
circular functions if 0 <z <.

The integrals of the second kind are defined by

Rp(z,y, 2

/ ¢t+xt+y@+@

with z > 0, x > 0 and y > 0, but only one of x or y may be zero.
The function is a degenerate special case of the integral of the third kind

dt
¢t+xt+mu+@@+m

Ry(z,y,2,p) =

with p # 0 and x,y,z > 0 with at most one equality holding. Thus Rp(z,y,2) = Rj(z,y,2, 7). The
normalisation of both these functions is chosen so that

Rp(z,z,2) = Ry(z,x,z,7) = 1/(z\/).

The algorithms used for all these functions are based on duplication theorems. These allow a recursion
system to be established which constructs a new set of arguments from the old using a combination of
arithmetic and geometric means. The value of the function at the original arguments can then be simply
related to the value at the new arguments. These recursive reductions are used until the arguments differ
from the mean by an amount small enough for a Taylor series about the mean to give sufficient accuracy
when retaining terms of order less than six. Each step of the recurrences reduces the difference from the
mean by a factor of four, and as the truncation error is of order six, the truncation error goes like (4096) ",
where n is the number of iterations.

The above forms can be related to the more traditional canonical forms (see Section 17.2 in Abramowitz
and Stegun (1972)).

If we write ¢ = cos®> ¢, 7 = 1 —m.sin> ¢, s = 1 + n.sin’ ¢, Wher60<gz$< 5m, we have
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the elliptic integral of the first kind:
sin ¢
F(¢|m) = / (1= )71 = mt?)"2dt = sin¢.Rp (g, 1);
0

the elliptic integral of the second kind:

sin ¢
E(¢lm) :/0 (1= )72 = mt?) Pt

=sin¢g.Rp(q,r,1) — %m sin® ¢.Rp(q,7,1)
the elliptic integral of the third kind:

sin ¢
1(n; 6|m) :/0 (1= 27201 = m?) V2 (1 4 nt?)dt

=sin¢.Rp(q,7,1) — %n sin® ¢.R(q, 7,1, s).

Also the complete elliptic integral of the first kind:
/2
K(m) = / (1= m.sin 6)"12d0 = Ryp(0, 1 — m, 1);
0
the complete elliptic integral of the second kind:

/2
E(m) = /0 (1 —m.sin® 8)'/2d6 = Rp(0,1 —m, 1) — bm.Rp(0,1 —m, 1).

2.3 Bessel and Airy Functions of a Complex Argument

The routines for Bessel and Airy functions of a real argument are based on Chebyshev expansions, as
described in Section 2.1. The routines for functions of a complex argument, however, use different
methods. These routines relate all functions to the modified Bessel functions I,(z) and K,,(z) computed in
the right-half complex plane, including their analytic continuations. [, and K, are computed by different
methods according to the values of z and v. The methods include power series, asymptotic expansions and
Wronskian evaluations. The relations between functions are based on well known formulae (see
Abramowitz and Stegun (1972)).

3 Recommendations on Choice and Use of Available Routines

Note: refer to the Users’ Note for your implementation to check that a routine is available.

3.1 Elliptic Integrals

IMPORTANT ADVICE: users who encounter elliptic integrals in the course of their work are strongly
recommended to look at transforming their analysis directly to one of the Carlson forms, rather than to the
traditional canonical Legendre forms. In general, the extra symmetry of the Carlson forms is likely to
simplify the analysis, and these symmetric forms are much more stable to calculate.

The routine S21BAF for R is largely included as an auxiliary to the other routines for elliptic integrals.
This integral essentially calculates elementary functions, e.g.,

Inz =(z— 1).RC((1§‘”)2,:E>, x > 0;

arcsinz = z.Ro(1 — 22, 1), |z| < 1;

arcsinhz = z.Ro(1 + 27, 1), etc.
In general this method of calculating these elementary functions is not recommended as there are usually
much more efficient specific routines available in the Library. However, S2IBAF may be used, for

example, to compute Inz/(x — 1) when z is close to 1, without the loss of significant figures that occurs
when Inz and x — 1 are computed separately.
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3.2 Bessel and Airy Functions

For computing the Bessel functions J,(x), Y, (z), I,(x) and K,(x) where x is real and v = 0 or 1, special
routines are provided, which are much faster than the more general routines that allow a complex argument
and arbitrary real v > 0. Similarly, special routines are provided for computing the Airy functions and
their derivatives Ai(x), Bi(x), Ai'(z), Bi'(x) for a real argument which are much faster than the routines
for complex arguments.

4 Index

Airy function, Al, 1€al arZUMENLE .......cccceevirieriieiieiierie ettt et ete ettt te et e e etesbeetesaeesbeeseensesneesseenes S17AGF
Airy function, Ai’, Teal ArGUMENT ............occoooviviieieeeeeeeeeeeeeeeeeee e eee e s s seen s seneeeas S17AJF
Airy function, Ai or Ai’, complex argument, optionally scaled ..........ccccocccoervererrerrereeenerereerenenn. S17DGF
Airy function, Bi, r€al argUMENt .........cccccciiiiiiiiiiiiiiieiie ettt et sbe et e s e et e b e ra e beennee e S17AHF
Airy function, Bi’, 1€al arUMENt ...........c.ocooevivimivieeeeeeeeeeeeeeeee e eee e s et eneesen e s S17AKF
Airy function, Bi or Bi’, complex argument, optionally scaled ...........cccccccoerrererreerrererienereneerennnn. S17DHF
ATCCOS, INVEISE CIFCULAT COSINE ...ooivviiiiiiiiiiiiiie ettt e ettt e e et e e e e e et e e e e s eaaae e e e e eeaaaeeeeeenaaeeas SO9ABF
Arccosh, inverse hyperboliC COSINEG ........cccciieriiiiiiiiiiiieiieie ettt et e et e sbeesereesreesseensee e S11ACF
ATCSIN, INVEISE CITCULAT SIME ...oiiiviiiiiiiiiieiii ettt ete e et e e ettt e e ete e e eeaeeeeteeeentaeeeeaaeeeeaeeeenes SO09AAF
Arcsinh, inverse hyperboliC SINE .......cccocieiiiiiiiieiieieie ettt ettt e S11ABF
Arctanh, inverse hyperboliC tangent ...........cccoocieviiiiiiieiieie ettt S11AAF
Bessel function, Jj, real argUMENt ..........cccoeoieiiiiiiiiiiniieie ettt sttt st S17AEF
Bessel function, J, 1€al argUmMENt ..........cccceeiiiiiiieeiiieiienieeerierteeeieeeeeeieesbeeeeeseeessseeseseessaessseenseeans S17AFF
Bessel function, J,, complex argument, optionally scaled ..........ccccooviriiniiiiiniininiinieeee S17DEF
Bessel function, Yj, real argUment ........c.cceccovieriiiiieninieieetesie et este ettt eae et enae s enes S17ACF
Bessel function, Y7, real argUment .........cccccceeieiiiiiieniniesie ettt ettt ae e b enaesne s S17ADF
Bessel function, Y,, complex argument, optionally scaled ..........ccccoooirieniiiiniiininieeneeeee S17DCF
Complement of the Cumulative Normal diStribUtion .........cc.ccceevevierieiiiienieeieieeere e eseee e S15ACF
Complement of the Error function, real argument .............ccccoocvevievieriiniecienieeeieceeee e S15ADF
Complement of the Error function, scaled, complex argument .............ccccoeveerieviencieneeceenieeeennennes S15DDF
COSINEG, NYPEIDOLIC ..oouiiieiiiieiicieiiee ettt ettt et e e bt esbe s st e beenbesseenbeeseensasseenseenes S10ACF
COSINEG TNEEETAL ..ottt ettt ettt et e st e bt et e e et e beenbesseenbeeneenseensenseenes S13ACF
Cumulative Normal distribution fUnCtION ..........cccceoirieiiiiieniieiereeeeeee e S15ABF
DaWSON’s INLEZTAL ......ccuiiiiieiieciieeee ettt ettt estaesbe e tbeesseessbeenseessseesseesnseenseensseanseenns S15AFF
Digamma function, SCAIEA ...........ccoovieiiiiiiiieieii ettt ettt et ae et eneens S14ADF
Elliptic functions, Jacobian, Sn, €N, ANl ......ccccoceiieiiiiieiieieeeeee ettt S21CAF
Elliptic integral, symmetrised, degenerate of 1st Kind, Ro .ccooveeverienieiienieiecieeseee e S21BAF
Elliptic integral, symmetrised, of 1st Kind, Rp ..ccccceevirieiiiieieeeee e S21BBF
Elliptic integral, symmetrised, of 2nd Kind, JRp .....cccccoveriiireiieriiieiie et S21BCF
Elliptic integral, symmetrised, of 3rd Kind, R; ...cccccoooeriiiiriiiiiiiieeeeeeetee e S21BDF
Elliptic integral, general, of 2nd Kind, F(2, 5,0, D) w.ovevevoreeeeeeieeeeieeeeeeeeeee e S21DAF
Erf) 1€al arUMENT .....occviiiiiiiiiciiceec ettt sttt e b e e s tb e bt e etbeetaeenbeensaensbeenneens S15AEF
Erfc, 1€al ArgUMENT .....cooiiiiiiieiiieie ettt ettt et e st s bt e taeseseessbeeaseessseenseesnseesseenseanseenns S15ADF
Erfc, scaled, COMPIEX ArZUMENT ........ccevuieiiieieiiieie et esie ettt ete e steeae st e te et e saeesbeeneesaesseensessnesseenns S15DDF
Error function, real argUmeENt ............cccoeieriieiieiierieeierie et eie et eie et te et e re e e steeeesteebesreenteenaeeseenes S15AEF
EXPONENtial, COMPIEX ...ooiviiiiiiieiieiieieie ettt ettt ettt ettt e et et e et e e beestesseessenseensesseenseensesseensesssanseenean SO1EAF
Exponential INTEEIal .........cccoooiiiieiiiiieie ettt ettt ettt et ettt et sttt s be et ebeenes S13AAF
Fresnel INtEGIal, € ....c.ooiiiieieiiiiieiieieeee sttt ettt ettt e saeebe st e eseeseeseeseeseesesbessesensessens S20ADF
Fresnel INtE@Ial, S ...ocviiiiiiciee ettt ettt ettt et et et e et esteebeereesaeereenbeeseebeenes S20ACF
GaAMMA TUNCHION ..ottt ettt eb et b bttt b e bt bt bt st e sbe e be et e s b e ebe e bt et e ebeebeebeebe e S14AAF
Gamma function, IMCOMPIELE .......eccueiiieiiiiieiieieeiee ettt ettt te et e e et esbe st e sbeeneesseenbeenaesseenee S14BAF
Generalized Factorial fUnCLION .........cccoociiieiiiiiiiiieieee ettt S14AAF
Hankel function H,El) or Hﬁz), complex argument, optionally scaled ..........ccccoevervieriircienieiennnne. S17DLF
Incomplete Gamma fUNCHON .....ocuieiiiiieiiiieieieete ettt sbe et e st e e et e sbesseesbeessesseenseensenseenes S14BAF
Jacobian elliptic functions, sn, cn, dn, real arguMENt ...........cccceevievierieiienienie e S21CAF
Jacobian elliptic functions sn, cn, dn, cOMpleX aArgUMENt ..........ccoeceevueecierierieneeieneee e S21CBF
Jacobian theta functions €,(z, ), 1eal ArGUMENT ......ccocivieuiiieicieieie e S21CCF
KEIVIN fUNCHION, DEIEL .ovviiiiiiiiiiiiee ettt et e ettt e e et e e e e ettt e e e e eenaaeeeeeeennaeeas S19ABF
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KEIVIN fUNCHON, DEI L oooviiiieiiieeeeee ettt e ettt e et e e eta e e eeaaeeeenaeeeeaeeeenens S19AAF
KEIVIN UNCHION, KEI L .ovviiiiiiiiiiiieeeeeeeee ettt ettt e ettt e ettt e e e e enaae e e e e e enaaeeeseennnaeeas S19ADF
KEIVIN UNCHION, KEI I .ovviiiiiiiiiiiie ettt e et e ettt e e e e et et e e e e eaaae e e e s ennnaeeas S19ACF
Legendre functions of 15t Kind P (2), PI(Z) woeeeeveeeeeeeeeeeeeeeeeeeeeeeeee s ves e S22AAF
Logarithm of Gamma fUNCHON ......c.ocuieiiiieiieiecieeeee ettt et S14ABF
Logarithm Of 1 - @ .oouiiiiiiiiiic ettt sttt SO1BAF
Modified Bessel function, I, 1€al argUment ...........ccccceereiierieriiieiiierieeeiieneeeieesreeieeereesereeseenseenes S18AEF
Modified Bessel function, 7, r€al argUment ............ccccceeiiieiiieeiiieiiienieecieeseeeieesaeeiee e e e eeeseeenes S18AFF
Modified Bessel function, I, complex argument, optionally scaled ..........ccccoevveviecienierienienienne. S18DEF
Modified Bessel function, K, real argument ...........ccoceriecierienieeiienienienie e sieeie e see e e enae e enie S18ACF
Modified Bessel function, K, real argUment ..........ccccoooevirienieniiienesieee et S18ADF
Modified Bessel function, K, complex argument, optionally scaled ...........ccocoeverviniiiininncnenne. S18DCF
Polygamma function 1/J<"’)(m), FEAL T oottt S14AEF
Polygamma function w(”)(z), COMPIEX 2 cevevirieriieeieriietiste et ettt est et b seebese et s eseebessebessebessesesseseesesnas S14AFF
PST TUNCHION .ottt ettt sttt sb e st sbe st sb e sbe et et b e bbb nae s S14ACF
Psi function and derivatives, SCaled ........c..cocoviiiriiiiiiiiiii e S14ADF
Scaled modified Bessel function, e 1*17y(z), real argument ..........ooo.ccoooovcooeevecooeeerceseeeceseeeeceeennee, S18CEF
Scaled modified Bessel function, ¢ 11T (z), real argument .............cccooovooioovveceooeoeioeeeceeeeeceen, S18CFF
Scaled modified Bessel function, e Kjy(x), real argument ............cccoceceoeeeririniireinineseseneseseeeeneens S18CCF
Scaled modified Bessel function, e K| (), real argument ............ccccceceoeoeeririniireirinesesisiseenenenenenas S18CDF
SINE, RYPEIDOLIC ..eiiiiiiiiiiieeeece ettt et e et e e b e e s teestbeessaesebeessaessseesbesnseensseassean S10ABF
SINE INEEETAL ...ttt ettt ettt et sb et eat e s bt et e ae e bt et ebe e st e bt et eaeen S13ADF
TANGENT, CITCULAT ...oviiiiiiiiieieiieeeteeie ettt ettt et et e st ebe e b e se e beesbesbeesbesseessasseenseessesseensesssesennsesseenes SO7AAF
Tangent, NYPEIDOLIC .....ooviiiiiiieieiiee ettt ettt e e st ebe et e saeenbeesaenseensenseenes S10AAF
Trigamma function, SCAIEA ........ccieiiiiieriieieiiee ettt ettt eneens S14ADF
Zeros of Bessel functions J, (), Jo(T), Yo(T), Ya(T) oo S17ALF

5 Routines Withdrawn or Scheduled for Withdrawal

None.
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